
Temperature-Sensitive Loop Parallelization for
Chip Multiprocessors

Sri Hari Krishna Narayanan, Guilin Chen, Mahmut Kandemir, Yuan Xie
Department of CSE, The Pennsylvania State University
{snarayan, guilchen, kandemir, yuanxie}@cse.psu.edu

Abstract

In this paper, we present and evaluate three temperature-sensitive loop parallelization strategies for
array-intensive applications executed on chip multiprocessors in order to reduce the peak temperature.
Our experimental results show that the peak (average) temperature can be reduced by 20.9◦

C (4.3◦
C)

when averaged over all the applications tested, incurring small performance/power penalties.

c©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

This work is supported in part by NSF Career Award 0093082, NSF grants 0130143, 0202007
and a grant from the GSRC.

Temperature-Sensitive Loop Parallelization for Chip Multiprocessors ∗

Sri Hari Krishna Narayanan, Guilin Chen, Mahmut Kandemir, Yuan Xie

Department of CSE, The Pennsylvania State University

{snarayan, guilchen, kandemir, yuanxie}@cse.psu.edu

Abstract

In this paper, we present and evaluate three
temperature-sensitive loop parallelization strategies for
array-intensive applications executed on chip multipro-
cessors in order to reduce the peak temperature. Our
experimental results show that the peak (average) tem-
perature can be reduced by 20.9◦C (4.3◦C) when av-
eraged over all the applications tested, incurring small
performance/power penalties.

1 Introduction

Power dissipation is emerging as a critical constraint
preventing hardware and software designers from ex-
tracting the maximum performance from computer sys-
tems. As technology scales, higher power consumption
coupled with smaller chip area will result in higher
power density, which in turn will lead to higher temper-
atures on chip [2, 3, 5, 10]. In fact, extrapolating the
changes in microprocessor organization and the device
miniaturization, one can project future power dissipa-
tion density to 200 W/cm2 [14]. This requires extensive
efforts on cooling techniques.

While hardware solutions to temperature manage-
ment problem are very important, software can also
play an important role because it determines the cir-
cuit components exercised during the execution and
the period of time for which they are exercised. In
particular, compilers determine the data and instruc-
tion access patterns of applications, which shape the
power density profile.

We present and evaluate three temperature-sensitive
loop parallelization strategies for array-intensive appli-
cations executed on chip multiprocessors. The pro-
posed strategies start with a pre-parallelized code and
re-distribute loop iterations across processors – at com-
pile time – in such a way that the temperature of each

∗This work is supported in part by NSF Career Award

0093082, NSF grants 0130143, 0202007 and a grant from the

GSRC.

processor is reduced, without affecting performance
and power consumption very adversely. To do this, we
first divide the iteration space of the loop nest being
optimized into multiple chunks of equal sizes, and for
each chunk, our approaches determine the best proces-
sor to use, taking into account load balance, tempera-
ture, and data locality. If the scheduling algorithm is
solely temperature-driven it may suffer from poor data
locality, on the other hand, if it is solely locality-driven
then it may suffer from poor load balancing. Thus
we propose a combined approach that has the advan-
tages of both temperature-driven and locality-driven
scheduling.

Our experimental results reveal that the proposed
parallelization strategy is very successful in practice.
Specifically, it contains the peak temperature of the
processors under a threshold temperature with little
performance/energy penalties. In addition, the pro-
posed approach reduces the peak (average) tempera-
ture by 20.9 ◦C (4.3 ◦C) when averaged over all the ap-
plications tested, incurring extra performance/power
penalties within a small range.

2 Related work

Chip multiprocessors are architectures with multi-
ple processors on a single chip [4]. Prior architecture-
related studies in the context of chip multiprocessors
include [1, 8, 13]. Reference [6] identifies the ideal num-
ber of processors to use when optimizing a particular
execution to minimize runtime or the energy consump-
tion.

Temperature hotspots have been identified as an
important design concern in modern processors [10,
11, 12]. Research on solving this problem has mainly
focused on runtime techniques. Other techniques in-
volve hotspot reduction through dynamic power man-
agement which is in turn achieved by techniques such
as voltage scaling. Activity migration [5] reduces tem-
perature in a chip by dynamically ping-ponging jobs
on multiple processors.

for (i=1; i≤600; i++)
for (j=1; j≤1000; j++)

B[i][j] = (A[i-1][j] + A[i+1][j] +
A[i][j-1] + A[i][j+1]) / 4;

(a)

for (i=k*120+1; i≤(k+1)*120; i++)
for (j=1; j≤1000; j++)

B[i][j] = (A[i-1][j] + A[i+1][j] +
A[i][j-1] + A[i][j+1]) / 4;

(c)

Slot P0 P1 P2 P3 P4 P5 P6 P7
1 0 6 12 18 24
2 1 7 13 19 25
3 2 8 14 20 26
4 3 9 15 21 27
5 4 10 16 22 28
6 5 11 17 23 29

(b)

Figure 1. Jacobi computation and a possible
schedule.

Our work is different from these in that it is static
in its approach and it targets parallel loops running on
chip multiprocessors. All decisions on task assignments
to processors are made at compile time. Furthermore,
we optimize the cache data reuse in assigning jobs to
processors by calculating the overlap of existing data in
cache and the data that will be accessed by the task to
be allocated to that processor. This is possible because
the decision to migrate computation is not taken in the
face of a thermal emergency, but rather in a calculated
proactive manner dictated by the compiler.

3 Preliminaries

The architecture being simulated is an 8 core chip
multiprocessor. The details of each core is given in
Table 1.

The loop parallelization problem can be regarded as
a process of partitioning the iteration space of a given
loop nest into chunks (sets) of successive iterations and
scheduling the iteration chunks into appropriate pro-
cessors. The resultant parallelized code can be repre-
sented using a schedule table. Figure 1 illustrates an
example. Figure 1(a) gives the loop nest for the Jacobi
Solver computation. Each iteration of this loop nest
can be represented using a two-entry vector (i, j)T ,
and there are a total of 600 × 1000 iterations in this
loop nest. Let us assume that we divide the iteration
space into 30 equal size chunks with each chunk having
20 × 1000 iterations. Each chunk can be represented
using Ik (0 ≤ k < 30), where Ik is defined as Ik =
{(i, j)T | 20 ∗k < i ≤ 20 ∗k+20 & 1 ≤ j ≤ 1000}. The
mapping of the iteration space to the data space of ar-
ray A which is accessed by the references shown can be

explained as DA = D
(−1,0)
A

⋃

D
(1,0)
A

⋃

D
(0,−1)
A

⋃

D
(0,1)
A ,

where

Dm,n
A = {[i, j] → [a, b] | a = i + m & b = j + n} (1)

In this work, we use the Omega Library [7] and Pres-
burger arithmetic [9] to represent the iteration chunks

Benchmark N1 N2 N3 N4 N5 N6 N7

3step-log 1 1 1

adi 4 1

btrix 1 1 1 1 1 1 3

eflux 1 2

tsf 1 2 1 1

Figure 2. Optimum number of processors.

A
rc

hi
te

ct
ur

al

D
et

ai
ls

Phase 2

Temperature
Aware Slot
Scheduling

HotSpot

Scheduler

Phase 1
Profiling

for(){

-

--

}

Temperature
Sensitive
Schedule

HotSpot

Phase 3

Locality
Aware Chunk

Assignment

C
hu

nk
 S

iz
es

C
yc

le
s

Phase 4

Code
Generation

Original Code

Temperature
Sensitive & Locality
Optimized Schedule

Temperature Sensitive &
Locality Optimized Code

Figure 3. Overview of our methodology.

and the data set they access. Figure 1(b) gives a pos-
sible schedule for the 30 iteration chunks on 5 out of
8 processors. If iteration chunk Ik is scheduled to be
executed on processor Pn at time slot m, the corre-
sponding table entry is k. An entry is left empty if
the processor is idle at that time slot. For example, I9

is scheduled on P1 at time slot 4, and processors P5,
P6, and P7 are idle during the entire execution. Fig-
ure 1(b) represents in a sense a parallelized version of
the original loop nest in the form a schedule table, and
the corresponding code to be executed on processor Pk

(0 ≤ k ≤ 4) is given in Figure 1(c).

Prior study [6] shows that, in many cases, using only
a subset of the available processors generates the best
result in terms of performance and energy. That is,
increasing the number of processors used can degrade
performance and/or can increase energy consumption
in some circumstances. Such a scenario may happen
due to parallelization overheads, data dependencies,
synchronization, etc. Figure 2 presents the optimum
number of processors for each nest of each benchmark
code used in our experiments (the information on our
benchmarks is given in Section 5). Note that increas-
ing the number of processors (for any nest) further in-
creases overall energy consumption without any ben-
efits. In our discussion of the different scheduling al-
gorithms, we will stick to such predetermined active
processor count limit, referred to as A in the rest of the
paper. In all the schedules obtained from our schedul-
ing algorithms we use no more than A processors at
each time slot .

Due to the reducing scale of technology, the power
density of chips has increased. As a processor expends
power, the increased power density causes a rise in the
operating temperature of the processor.

If a processor operates above a safe threshold tem-

perature, it could lead to the burning and permanent
damage of the chip. In order to prevent this, the chip
should never be allowed to exceed the threshold tem-
perature. This is called the threshold temperature con-
straint. Our work is a compiler driven approach that
determines a schedule at compile time that will prevent
the chip from operating at a super threshold tempera-
ture. Such a schedule lets a processor be idle period-
ically so that it cools down. However, this should be
performed in a performance-sensitive manner.

To calculate the rise and fall of the temperature of
a processor, we use the following framework which is
based on the Hot-Spot tool [12]. Assuming that a pro-
cessor’s temperature at cycle c is Tc, a processor’s tem-
perature after running for δ cycles can be estimated
using:

Tc+δ = F(Tc, δ, Computationδ, floorplan, power) (2)

That is, a processor’s temperature at a specific time is
determined by its previous temperature (Tc), the power
it expends in δ, the number of cycles during which it
expends this power as well as the physical layout and
properties of the processors.

The granularity of our scheduling and hence thermal
model is an iteration chunk, i.e., we estimate a pro-
cessor’s temperature at the end of one time slot (the
time for running an iteration chunk) based on its tem-
perature at the end of the previous time slot and its
power consumption and computation during the cur-
rent time slot. The power consumption is a function
of the computation performed by the processor in the
current time slot. Since all the iteration chunks are of
equal size, we assume that the computation to execute
each iteration chunk is the same. The time and energy
required for executing a chunk is determined through
profiling.

As a result, at compile time, we are aware of the
computation chunks, the time they take to execute,
and the power each chunk expends. Furthermore, the
floor plan of the system is constant. Hence, given a
starting temperature, our compiler can estimate the
temperature changes due to the execution of the appli-
cation statically. In order to do so, a scheduler based
around the Hot-Spot tool was created. Hot-Spot is
used to return the temperature of a processor at the
end of each iteration chunk. This information is used
to decide in the scheduler whether an iteration can be
scheduled to that particular processor or not. To pre-
vent the temperature of a processor from rising above
the threshold temperature, our scheme lets a proces-
sor be idle periodically to it cool down. Computation
is scheduled on the processor once its temperature has
fallen sufficiently.

Algorithm 1 Temperature driven scheduling.
1: T imeSlot← 0;

2: while exist nonscheduled iteration chunk do

3: for all processors do

4: P ← the A coolest processors;

5: delete from P the processors with threshold temperature;

6: end for

7: schedule an iteration chunk for each processor in P at T imeSlot;

8: remove these iteration chunks;

9: T imeSlot ← T imeSlot + 1;

10: end while

Figure 3 illustrates our scheme. In the first phase,
the code is profiled and information such as the number
of cycles it takes to execute, the size of iteration chunks,
and the energy they consume are extracted. In the
second phase, this information along with the details
of the architecture being simulated are fed as input to
our scheduler, which returns a temperature-sensitive
schedule. Next, in the third phase, this schedule is
optimized for data cache locality. Finally in Phase 4,
the Omega Library is used to generate code based on
the schedule.

4 Our approach

4.1 Temperature-driven loop scheduling

Let us now discuss an approach to temperature-
driven loop scheduling. Algorithm 1 gives a sketch of
the algorithm for the temperature-driven loop schedul-
ing approach. In this algorithm, we schedule the iter-
ation chunks one time slot at a time. At each step, we
select the coolest (in terms of temperature) processors,
and the number of such processors does not exceed A.
We estimate a processor’s temperature from its tem-
perature and activity in the previous time slot using
the temperature estimation function (Equation (2)).
By selecting the coolest processors at each time slot,
we reduce the overall temperature. It is possible that
there are less than A schedulable iteration chunks at
some time slots because of the threshold temperature.
We repeat this process until all the iteration chunks
have been scheduled.

Figure 4(a) gives the schedule generated by this al-
gorithm for the example program given in Figure 1, as-
suming that the value of A is 5. For all the algorithms
presented in the paper, we assume the following simple
temperature estimation function for each processor p:

Tc+1(p) =

{

Tc(p) + 1 if p runs at time slot c;
Tc(p) − 1 if p is idle at time slot c.

(3)

We assume further that the initial temperature is 0,
and the threshold temperature is 2. This temperature-
driven schedule has better thermal behavior than the
original one (in terms of both the average and peak

temperatures), and it uses only one more time slot than
the original schedule. However, an important problem
with this schedule is that it does not consider data lo-
cality. By looking at the program given in Figure 1, one
can see that data reuse happens between the neighbor-
ing iteration chunks. In the original schedule given in
Figure 1(b), data locality is optimized since most of the
iteration chunk pairs that share data are scheduled on
the same processor successively. But the schedule given
in Figure 4(a) does not have this good locality behav-
ior. Actually, none of the iteration chunks scheduled
on processor P4 have data reuse among them. The de-
graded data locality in this temperature-driven sched-
ule is mainly due to the fact that we did not consider
any data reuse when we schedule the iteration chunks.
In the next subsection, we discuss a data locality-driven
scheduling approach.

4.2 Data locality-driven loop scheduling

Algorithm 2 gives a sketch of our locality-driven loop
scheduling algorithm. This algorithm is locality-driven
since, at each step, it tries to determine the chunk-
processor pair, (I, p), that is the best in terms of data
reuse (lines 8–10 in Algorithm 2). In our work, the
potential data reuse achieved by scheduling iteration
chunk I on processor p is obtained by calculating the
intersection set of the data elements accessed by I (cal-
culated using a mapping similar to Equation 1), and
those accessed by the last-scheduled iteration chunk on
p. That is, if the set of data elements accessed by I is
D1, and the set of data elements accessed by the last-
scheduled iteration chunk on p is D2, the data reuse
is determined by the size of set D1 ∩ D2. As has been
discussed in Section 3, in this work, the data elements
accessed by an iteration chunk are obtained using the
Omega Library tool.

Note that we still need to make sure that the re-
sultant schedule satisfies the active processor count
limit and threshold temperature constraint. The array
NextSlot in Algorithm 2 captures such requirement.
Specifically, for each processor p, NextSlot[p] gives the
next available time slot to which we can schedule an
iteration chunk without violating the active processor
count limit and the threshold temperature constraint.
After a new iteration chunk is scheduled, NextSlot is
updated to reflect the change in the schedule (line 12
in Algorithm 2).

It might happen under this scheduling algorithm
that some processors have many more iteration chunks
scheduled on them than other processors, since a pure
data locality-driven loop scheduling algorithm does not
guarantee load balance among the processors. Such a

Algorithm 2 Data locality driven scheduling.
1: ∀ processor p: NextSlot[p]← 0;

2: Bound← ⌈(number of iteration chunks)/A⌉;

3: while exist nonscheduled iteration chunk do

4: if none of the processors is schedulable then

5: increase Bound by ⌈(number of nonscheduled iteration chunks)/A⌉;

6: for each processor p, p is schedulable if NextSlot[p] < Bound;

7: end if

8: for all nonscheduled iteration chunks and all schedulable processors do

9: find the best iteration chunk and processor pair (I, p) such that data
reuse is maximum

10: end for

11: schedule iteration chunk I on processor p at time slot NextSlot[p];

12: update NextSlot[] for all processors;

13: if NextSlot[p] ≥ Bound then

14: p is not schedulable;

15: end if

16: end while

Slot P0 P1 P2 P3 P4 P5 P6 P7
1 0 1 2 3 4
2 5 6 7 8 9
3 10 11 12 13 14
4 15 16 17 18 19
5 20 21 22 23
6 24 25 26 27 28
7 29

(a)

Slot P0 P1 P2 P3 P4 P5 P6 P7
1 0 4 8 12 16
2 1 5 9 13 17
3 20 22 24
4 2 6 10 14 18
5 21 23 25
6 3 7 11 15 19
7 27 28 26
8 29

(b)

Figure 4. Example schedule (a) using algo-
rithm 1, (b) using algorithm 2.

scenario should be avoided since the total number of
time slots to finish all the iteration chunks in this sce-
nario can be much higher than that of a load-balanced
schedule. The term Bound in Algorithm 2 addresses
this scenario.

As one can observe from Figure 4(b), Algorithm 2
can generate a schedule that exhibits much better data
locality than the schedule in Figure 4(a) generated by
the temperature-driven algorithm (Algorithm 2). How-
ever, we also observe that the schedule given in Fig-
ure 4(b) requires one more slot to finish than the sched-
ule given in Figure 4(a). Therefore, we can conclude
that these two scheduling algorithms have their own
advantages and disadvantages. In the next subsection,
we propose a loop scheduling algorithm that combines
these two algorithms and has the advantages of both
of them.

4.3 A combined approach to scheduling

The idea behind our combined approach is straight-
forward. Since the temperature-driven approach is
good in terms of load balancing, we first use the
temperature-driven approach to determine for each
processor its state (i.e., running or idle) at each time
slot. After that, we use a locality-driven approach
to determine the iteration chunks to be executed on
each processor so that data locality is optimized. Al-
gorithm 3 gives the algorithm for our combined ap-
proach. In the first part of this algorithm (lines 1–11),
we determine the time slots at which each processor
should be running an iteration chunk. This information

Algorithm 3 Algorithm for the combined approach.
1: mark all processors as idle for all time slots;

2: TimeSlot ← 0;

3: while exist nonscheduled iteration chunk do

4: for all processors do

5: P ← the A coolest processors;

6: delete from P the processors with threshold temperature;

7: end for

8: mark each processor in P as running at T imeSlot;

9: remove these iteration chunks;

10: TimeSlot ← T imeSlot + 1;

11: end while

12: ∀ processor p: NextSlot[p]← the first running time slot for p;

13: while exist nonscheduled iteration chunk do

14: for all nonscheduled iteration chunks and all schedulable processors do

15: find the best iteration chunk and processor pair (I, p) such that data
reuse is maximum

16: end for

17: schedule iteration chunk I on processor p at time slot NextSlot[p];

18: NextSlot[p]← the next running time slot for p;

19: if no next running time slot for p then

20: p is not schedulable;

21: end if

22: end while

■7

■■■■■6

■■■■5

■■■■■4

■■■■■3

■■■■■2

■■■■■1

P7P6P5P4P3P2P1P0Slot

237

191511736

292622185

281410624

2521171393

272420512

16128401

P7P6P5P4P3P2P1P0Slot

(a) (b)

Figure 5. Example schedule using algorithm
3.

is exploited in the second part of the algorithm (lines
12–22) to determine the next schedulable time slot for
each processor. In the second part, a data locality-
driven approach is used to assign the iteration chunks
to each processor’s running time slots for data local-
ity optimization. Note that determining NextSlot and
schedulable processors is much simpler in Algorithm 3
compared to Algorithm 2, since we can utilize the infor-
mation from a temperature-driven scheduling. We can
conclude from the above discussion that Algorithm 3
combines the advantages of both a temperature-driven
algorithm and a locality-driven algorithm. Therefore,
this combined approach is expected to perform well in
terms of both load-balancing and data locality.

Figure 5 gives a sample schedule obtained after ap-
plying our combined approach on the code presented in
Figure 1. We first use the temperature-driven approach
to obtain the active time slots for each processor. The
results are given in Figure 5(a). Note that Figure 5(a)
is the same as Figure 4(a) except that the entries in Fig-
ure 5(a) are represented as black boxes (which means

Table 1. Architectural details.

Parameter Brief Explanation

Processor 300MHz single issue
Chip Area 5.6mm2

L1 Data & Private, write through,
Instr. Cache 64 lines, 4 way, lru

L2 Cache Shared, write back,
64 lines, 4 way, lru

Table 2. Benchmarks used.

Bench- Cycles Energy
-mark (Million) (µJ)

3step-log 1487 1894686.2
adi 438 1239551.1
btrix 1351 1802476.2
eflux 56 80918.1
tsf 1799 2548001.6

the corresponding iteration chunk to be executed has
not been determined yet) rather than using iteration
chunk numbers. After that, we apply the data locality-
driven scheduling approach to the schedule table in
Figure 5(a), and we obtain the final schedule shown
in Figure 5(b). Compared with Figure 4(a), the sched-
ule given in Figure 5(b) has much better data locality
since most of the iteration chunks that have data reuse
are scheduled successively (on the same processor) in
Figure 5(b). The schedule given in Figure 4(b) also
has good data locality, but it needs one more time slot
to finish execution compared to the schedule in Fig-
ure 5(b).

5 Experimental results

We evaluate our temperature-sensitive loop par-
allelization scheme using five array-intensive codes.
Their important characteristics are given in Table 2.
All the values listed in this table are obtained by
executing the applications without any temperature-
sensitive loop scheduling. In the rest of our discussion,
we refer to this version of an application as the base
version).

Figure 6(a) gives the peak temperature curves for
the execution of adi. The dashed line represents the
threshold temperature. In Figure 6(a), using the
original temperature-insensitive parallelization strat-
egy, the peak temperature of the processors increases
and exceeds the threshold temperature shortly after the
start of execution. On the other hand, after using our
temperature-sensitive loop parallelization strategy (the
combined approach, referred to as “temperature sensi-
tive”), we can effectively reduce the peak temperature
of the processors. Specifically, the peak temperature of
the processors is always kept below the threshold tem-
perature as can be observed from Figure 6(a). Table 3
gives the experimental results of our temperature-
sensitive loop parallelization approach. As we can ob-
serve from Table 3, our approach reduced the peak tem-
perature and average temperature by 20.9 degrees and
4.3 degrees, respectively, when averaged over all the ap-
plication tested (with respective the the base version).
In addition, our approach achieves the significant tem-

Table 3. Results of our combined approach.

Benchmark Peak Temperature Average Temperature Extra Energy Extra Execution
Name Original Optimized Original Optimized Consumption Cycles

3step-log 95.5 80.7 80.7 78.7 2.4% 1.8%
adi 146.1 86.8 100.5 85.0 2.4% 9.1%
btrix 84.9 78.9 74.1 73.9 0.8% 0.6%
eflux 84.9 74.2 76.4 73.7 7.4% 4.0%
tsf 87.6 74.2 80.0 73.0 1.6% 1.2%
average 99.8 78.9 81.2 76.9 2.9% 3.3%

60

70

80

90

100

110

120

130

140

150

0 10 20 30 40 50 60 70 80 90

Percentage of Execution

P
ea

k
T

em
pe

ra
tu

re

threshold temperature

100

base

temperature-sensitive
78
79
80
81
82
83
84
85
86
87
88

0 10 20 30 40 50 60 70 80 90

Percentage of Execution

T
em

pe
ra

tu
re

 o
f P

ro
ce

ss
or

 P
0

(a) (b)
Figure 6. (a) Peak temperature of hottest pro-
cessor at anytime for adi. The dashed line rep-
resents the threshold temperature. (b) Tem-
perature curves of processor P0 for adi.

perature reduction with only a small amount of over-
head in terms of energy consumption and execution
cycles. Specifically, the energy consumption and exe-
cution cycles increase by 2.9% and 3.3% respectively.
Figure 6(b) gives the temperature curve of processor
P0 for adi. Using the original temperature-insensitive
parallelization strategy, P0’s temperature quickly goes
beyond the threshold temperature (not shown). Using
our temperature-sensitive approach, as processor P0’s
temperatures approaches the threshold temperature, it
will not be scheduled since its temperature is too high.
That is, P0 is kept idle in order for it to cool down.
The decreasing slopes indicate the idle periods. Note
that, during these periods, other processors that are
cooler may be scheduled to execute iteration chunks.
When P0’s temperature is low enough, it can execute
iteration chunks (i.e., becomes active). The increasing
slopes indicate the active periods. We can observe from
Figure 6(b) that our approach can effectively prevent
a processor from going beyond the threshold tempera-
ture.

In obtaining the results presented above, we set the
threshold temperature parameter used in our compiler
algorithm according to the physical temperature con-
straint, so that the peak temperature of the processors
using our scheme will not exceed the physical temper-
ature constraint. It is possible for us to lower the peak
temperature further by lowering the threshold temper-
ature parameter used in our scheme. We do not go
into this further due to space constraints. Overall, we
can conclude that our approach can achieve significant
temperature reduction without incurring too much per-
formance/power penalties.

6 Concluding remarks

Many advances in computer technology have been
made possible by increases in the packaging density
of electronics. However, with ever-increasing levels of
power consumption, power density is starting to be-
come a serious issue before computer architects and
software writers alike. As against the prior hardware-
based solutions to this problem, this paper focuses on
compilers, and proposes three temperature-aware loop
parallelization schemes for chip multiprocessors. The
combined approach reduces the peak (average) temper-
ature by 20.9 ◦C (4.3 ◦C) when averaged over all the
applications tested.

References

[1] L. A. Barroso et al. Piranha: A scalable architecture based on

single-chip multiprocessing. ISCA, June 2000.

[2] D. Brooks and M. Martonosi. Dynamic thermal management

for high-performance microprocessors. HPCA, 2001.

[3] J. Donald and M. Martonosi. Temperature-aware design issues

for SMT and CMP architectures. WCED-5, June 2004.

[4] L. Hammond, B. A. Nayfeh, and K. Olukotun. A single chip

multiprocessor. In IEEE Computer, pp. 79–85, 1997.

[5] S. Heo, K. Barr, and K. Asanovic. Reducing power density

through activity migration. ISLPED, 2003.

[6] I. Kadayif, M. Kandemir, and M. Karakoy. An energy saving

strategy based on adaptive loop parallelization. DAC, 2002.

[7] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Sheipman, and D.

Wonnacott. The Omega calculator and library, version 1.1.0.

November 1996.

[8] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keck-

ler. A design space evaluation of grid processor architectures.

MICRO, 2001.

[9] W. Pugh. Counting solutions to Presburger formulas: how and

why. PLDI, 1994.

[10] E. Rohou and M. Smith. Dynamically managing processor tem-

perature and power. FDDO-2, 1999.

[11] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-theoretic

techniques and thermal-RC modeling for accurate and local-

ized dynamic thermal management. HPCA, 2002.

[12] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-

narayanan, and D. Tarjan. Temperature-aware microarchitec-

ture. ISCA, June 2003.

[13] M. B. Taylor et al. The RAW microprocessor: A computa-

tional fabric for software circuits and general-purpose pro-

grams. IEEE Micro, 22(2):25–35, March 2002.

[14] http://www.hpl.hp.com/research/dca/smart cooling/.

